Hochschild and Cyclic Homology of Finite Type Algebras

نویسندگان

  • DAVID KAZHDAN
  • VICTOR NISTOR
چکیده

We study Hochschild and cyclic homology of finite type algebras using abelian stratifications of their primitive ideal spectrum. Hochschild homology turns out to have a quite complicated behavior, but cyclic homology can be related directly to the singular cohomology of the strata. We also briefly discuss some connections with the representation theory of reductive p–adic groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excision in Hochschild and Cyclic Homology without Continuous Linear Sections

We generalise the known excision results for Hochschild, cyclic and periodic cyclic homology to algebras in symmetric monoidal categories. Our abstract result also contains excision for extensions of nuclear H-unital Fréchet algebras. As an application, we compute the Hochschild and cyclic homology of the algebra of Whitney functions on an arbitrary closed subset of a smooth manifold, and the p...

متن کامل

Hochschild (co)homology of exterior algebras

The minimal projective bimodule resolutions of the exterior algebras are explicitly constructed. They are applied to calculate the Hochschild (co)homology of the exterior algebras. Thus the cyclic homology of the exterior algebras can be calculated in case the underlying field is of characteristic zero. Moreover, the Hochschild cohomology rings of the exterior algebras are determined by generat...

متن کامل

Cyclic Homology of Dedekind Domains

The purpose of this paper is to calculate the cyclic homology of rings of integers of global fields. We accomplish this by explicitly computing the homology of the simple complex associated to Tsygan’s double complex. To accomplish this, we first compute the cyclic homology of cyclic algebras, i.e., algebras of the form A = R[t]/(P (t)), where P is a monic polynomial with coefficients in R. Mor...

متن کامل

Homology of Algebras of Families of Pseudodifferential Operators

We compute the Hochschild, cyclic, and periodic cyclic homology groups of algebras of families of Laurent complete symbols on manifolds with corners. We show in particular that the spectral sequence associated with Hochschild homology degenerates at E and converges to Hochschild homology. As a byproduct, we deduce an identification of the space of residue traces on fibrations by manifolds with ...

متن کامل

On the homology of almost Calabi-Yau algebras associated to SU (3) modular invariants

We compute the Hochschild homology and cohomology, and cyclic homology, of almost Calabi-Yau algebras for SU(3) ADE graphs. These almost Calabi-Yau algebras are a higher rank analogue of the pre-projective algebras for Dynkin diagrams, which are SU(2)-related constructions. The Hochschild (co)homology and cyclic homology of A can be regarded as invariants for the braided subfactors associated t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997